## Loading One Condition Data
data("twoConditionsExample", package = "NetPhorce")
## ## Identify the Key Columns
identifiedCols <- confirmColumnNames(rawMaxQuant = twoConditionsExample,
positionCol = "Position",
reverseCol = "Reverse",
localizationProbCol = "Localization prob",
potentialContaminationCol = "Potential contaminant",
aminoAcidCol = "Amino acid",
uniqueIDCol = "Protein",
seqWindowIDCol = "Sequence window",
fastaIDCol = "Fasta headers")
## Identify the Intensity Columns with Condition, Time Point and Replication Information
intensityCols <- confirmIntensityColumns(rawMaxQuant = twoConditionsExample,
intensityPattern = "con_time_rep",
verbose = TRUE)
## Process the data based on the identified columns
netPhorceData <- processData(rawMaxQuant = twoConditionsExample,
processedColNames = identifiedCols,
processedIntensity = intensityCols,
minReplication = 3,
minLocalProb = 0.75)
#>
#> Number of Conditions Found: 2. Undergoing a time consuming step, please wait...
#>
#> Complete.
## Validating the Kinase/Phosphatase Information
netPhorceData <- validateKinaseTable(netPhorceData = netPhorceData,
defaultKinaseTable = TRUE,
abbrev = "Ath")
#> Kinase and Phosphatase Matching Table:
## Regulation Validation based on user inputs
netPhorceData <- regulationCheck(netPhorceData = netPhorceData,
upReg = 0.25,
downReg = 0.25,
absMinThreshold = 0.1,
qValueCutOff = 0.05,
verbose = TRUE)
## Network Analysis
netPhorceData <- networkAnalysis(netPhorceData = netPhorceData,
requestPlotData = TRUE)
#>
#> Undergoing a time consuming step, please wait...