Introduction

The following tutorials is based on a single condition experiment data.

1.0 NetPhorce loading

library(NetPhorce)
paste0("NetPhorce Version: ", packageVersion("NetPhorce"))
#> [1] "NetPhorce Version: 1.0.0"

2.0 Loading One Condition Example

## Loading One Condition Data
data("oneConditionExample", package = "NetPhorce")
DT::datatable(oneConditionExample, 
              rownames = FALSE, 
              options = list(
                pageLength = 5, 
                scrollX = TRUE,
                rownames = FALSE,
                autoWidth = TRUE, 
                columnDefs = list(list(targets=c(7), width = "700px"),
                                  list(className = 'dt.center', targets = "_all"))
              )) 

3.0 Pre-processing the raw MaxQuant data

3.1 Identifying the Key Columns

## Identify the Key Columns
identifiedCols <- confirmColumnNames(rawMaxQuant = oneConditionExample,
                                     positionCol = "Position",
                                     reverseCol = "Reverse",
                                     localizationProbCol = "Localization prob",
                                     potentialContaminationCol = "Potential contaminant",
                                     aminoAcidCol = "Amino acid",
                                     uniqueIDCol = "Protein",
                                     seqWindowIDCol = "Sequence window",
                                     fastaIDCol = "Fasta headers")
#> [1] "MaxQuant Data Matrix Statistics: "
#> [1] "Number of Rows (Peptides):     340"
#> [1] "Number of Columns (Variables): 83"
#> [1] "Required Columns are all Found"

3.2 Identifying the pattern for the intensity columns

## Identify the Intensity Columns with Condition, Time Point and Replication Information
intensityCols <- confirmIntensityColumns(rawMaxQuant = oneConditionExample,
                                         intensityPattern = "con_time_rep",
                                         verbose = TRUE)
#> First Found Column Name is:
#> Intensity HT_0min_A___1
#> ---------------------------------------------------------------------------------------
#> Summary below is shown as unique Replications per Condition for each unique Time Point:
#>   Time        HT
#>   0min A;B;C;D;E
#>  12min A;B;C;D;E
#>   3min A;B;C;D;E
#>   6min A;B;C;D;E
#>   9min A;B;C;D;E

4.0 Process the raw MaxQuant data

## Process the data based on the identified columns
netPhorceData <- processData(rawMaxQuant = oneConditionExample,
                             processedColNames = identifiedCols,
                             processedIntensity = intensityCols,
                             minReplication = 3,
                             minLocalProb = 0.75)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |=============================                                         |  42%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=========================================                             |  58%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |==========================================================            |  83%
  |                                                                            
  |================================================================      |  92%
#> 
#> Number of Conditions Found: 1. Undergoing a time consuming step, please wait...
#> 
  |                                                                            
  |======================================================================| 100%
#> 
#> Complete.

5.0 Validate the Kinases and Phosphatase data for the processed netPhorce data

## Validating the Kinase/Phosphatase Information
netPhorceData <- validateKinaseTable(netPhorceData = netPhorceData,
                                     defaultKinaseTable = TRUE,
                                     abbrev = "Ath")
#> Kinase and Phosphatase Matching Table:
#>             Matched Proteins Matched Peptides
#> Kinase                     5               12
#> Phosphatase                3                8
#> Unmatched                 77              183

6.0 Confirmation on the Regulation Thresholds for the netPhorce data

## Regulation Validation based on user inputs
netPhorceData <- regulationCheck(netPhorceData = netPhorceData,
                                 upReg = 0.25,
                                 downReg = 0.25,
                                 absMinThreshold = 0.1,
                                 qValueCutOff = 0.05,
                                 verbose = TRUE)
#>                   # Fold change occurances
#> Dephosphorylation                       72
#> Unchanged                               55
#> Phosphorylation                         89

7.0 Network Anlaysis

## Network Analysis
netPhorceData <- networkAnalysis(netPhorceData = netPhorceData,
                               requestPlotData = TRUE)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |================                                                      |  22%
#> 
#> Undergoing a time consuming step, please wait...
#> 
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |======================================================                |  78%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |======================================================================| 100%

8.0 Session Info

sessionInfo()
#> R version 4.1.0 (2021-05-18)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=English_United States.1252 
#> [2] LC_CTYPE=English_United States.1252   
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C                          
#> [5] LC_TIME=English_United States.1252    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] NetPhorce_1.0.0 DT_0.27        
#> 
#> loaded via a namespace (and not attached):
#>   [1] bitops_1.0-7                matrixStats_0.63.0         
#>   [3] fs_1.6.1                    httr_1.4.5                 
#>   [5] rprojroot_2.0.3             GenomeInfoDb_1.28.4        
#>   [7] dynamicTreeCut_1.63-1       tools_4.1.0                
#>   [9] backports_1.4.1             bslib_0.4.2                
#>  [11] affyio_1.62.0               utf8_1.2.3                 
#>  [13] R6_2.5.1                    DBI_1.1.3                  
#>  [15] BiocGenerics_0.38.0         lazyeval_0.2.2             
#>  [17] colorspace_2.1-0            withr_2.5.0                
#>  [19] tidyselect_1.2.0            curl_5.0.0                 
#>  [21] preprocessCore_1.54.0       compiler_4.1.0             
#>  [23] textshaping_0.3.6           cli_3.6.0                  
#>  [25] Biobase_2.52.0              desc_1.4.2                 
#>  [27] DelayedArray_0.18.0         plotly_4.10.1              
#>  [29] sass_0.4.5                  scales_1.2.1               
#>  [31] affy_1.70.0                 pkgdown_2.0.7              
#>  [33] systemfonts_1.0.4           stringr_1.5.0              
#>  [35] digest_0.6.31               rmarkdown_2.20             
#>  [37] XVector_0.32.0              pkgconfig_2.0.3            
#>  [39] htmltools_0.5.4             MatrixGenerics_1.4.3       
#>  [41] limma_3.48.3                fastmap_1.1.1              
#>  [43] htmlwidgets_1.6.1           rlang_1.0.6                
#>  [45] rstudioapi_0.14             visNetwork_2.1.2           
#>  [47] jquerylib_0.1.4             generics_0.1.3             
#>  [49] jsonlite_1.8.4              crosstalk_1.2.0            
#>  [51] dplyr_1.1.0                 car_3.1-1                  
#>  [53] RCurl_1.98-1.10             magrittr_2.0.3             
#>  [55] GenomeInfoDbData_1.2.6      Matrix_1.5-3               
#>  [57] Rcpp_1.0.10                 munsell_0.5.0              
#>  [59] S4Vectors_0.30.2            fansi_1.0.4                
#>  [61] abind_1.4-5                 vsn_3.60.0                 
#>  [63] lifecycle_1.0.3             stringi_1.7.12             
#>  [65] yaml_2.3.7                  carData_3.0-5              
#>  [67] SummarizedExperiment_1.22.0 zlibbioc_1.38.0            
#>  [69] Rtsne_0.16                  plyr_1.8.8                 
#>  [71] qvalue_2.24.0               grid_4.1.0                 
#>  [73] randomcoloR_1.1.0.1         parallel_4.1.0             
#>  [75] forcats_1.0.0               lattice_0.20-44            
#>  [77] splines_4.1.0               knitr_1.42                 
#>  [79] pillar_1.8.1                igraph_1.4.1               
#>  [81] ggpubr_0.6.0                GenomicRanges_1.44.0       
#>  [83] ggsignif_0.6.4              reshape2_1.4.4             
#>  [85] stats4_4.1.0                glue_1.6.2                 
#>  [87] evaluate_0.20               V8_4.2.2                   
#>  [89] BiocManager_1.30.20         data.table_1.14.8          
#>  [91] vctrs_0.5.2                 gtable_0.3.1               
#>  [93] purrr_1.0.1                 tidyr_1.3.0                
#>  [95] assertthat_0.2.1            cachem_1.0.7               
#>  [97] ggplot2_3.4.1               xfun_0.37                  
#>  [99] broom_1.0.4                 rstatix_0.7.2              
#> [101] ragg_1.2.5                  viridisLite_0.4.1          
#> [103] tibble_3.2.0                memoise_2.0.1              
#> [105] IRanges_2.26.0              ellipse_0.4.3              
#> [107] cluster_2.1.2               ellipsis_0.3.2